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Abstract
Cdk5 is a member of the cyclin-dependent kinase family.
Unlike other conventional Cdks that are major regulators
of eukaryotic cell cycle progression, Cdk5 displays di-
verse functions in neuronal as well as non-neuronal tis-
sues. In particular, accumulating evidence points to the
roles of this kinase in CNS development and other cellu-
lar processes. In this article, we summarize the functional
roles of Cdk5 pertaining to the formation and functions of
synapse, a specialized structure for the fundamental
functions of neurons.

Copyright © 2003 S. Karger AG, Basel

Introduction

Cyclin-dependent kinase 5 (Cdk5) is a unique member
of the Cdk family, playing key roles in a number of cellu-
lar processes rather than the control of cell cycle progres-
sion. Since the discovery of Cdk5 in the early 1990s, an
explosion of studies has unraveled many remarkable
properties of this kinase. Whereas the activity of other
members in the Cdk family depends on the association
with another family of regulators, the cyclins, Cdk5 inter-

acts with and is activated by its non-cyclin activators, p35
or p39 [1–3]. Although Cdk5 is ubiquitously expressed in
most tissues, its kinase activity is largely restricted in the
nervous system, owing to the specific localization of its
activators [4]. The best-characterized function of Cdk5 is
to regulate neuronal migration, mainly based on the stud-
ies of null mice of Cdk5 and its activators [5–7]. More-
over, several lines of evidence also point to the roles of
Cdk5 in neurite outgrowth and cytoskeleton dynamics [8–
10]. Intriguingly, deregulated Cdk5 activity is also linked
to neurodegenerative diseases such as Alzheimer’s disease
[11, 12] and amyotrophic lateral sclerosis [13].

Cdk5 Is Not a Typical Cyclin-Dependent Kinase

Cdk5, also known as neuronal Cdc2-like kinase
(NCLK), was initially identified by biochemical purifica-
tion from bovine brain [14]. Although Cdk5 shows a high
sequence homology to Cdc2 and Cdk2 (F60% identity in
the mammalian system), there are striking differences
between Cdk5 and other Cdks. Cdks are so named
because their activity depends on association with a fami-
ly of regulatory factors, the cyclins [15]. Surprisingly,
although Cdk5 can associate with cyclin D1 and cyclin E,
these Cdk5/cyclin complexes cannot phosphorylate his-
tone H1 [16, 17]. The activity of Cdk5 depends on asso-
ciation with non-cyclin activators, p35 or p39, indicating
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that Cdk5 is not cyclin-dependent. Notably, Cdk5 activity
is in large part restricted to neurons because of the spatial
expression of its activators. p35, also known as neuronal
Cdk5 activator, was originally identified as Cdk5 binding
partner in brain extract by two different groups [1, 2].
Another identified Cdk5 activator, p39, also known as
neuronal Cdk5 activator isoform, shares 57% amino acid
identity with p35 [3]. Interestingly, although p35 and p39
show little sequence similarity to cyclins, it has been
reported that p35 may adopt a cyclin-like structure for
Cdk5 activation [18, 19]. Whereas Cdk5 is present in both
cytoplasm and membrane, p35 and p39 are enriched in
plasma membrane [20–22], owing to an N-terminal my-
ristoylation signal motif [10]. Recent studies also reveal
the expression of Cdk5 and p35 in the nucleus [23, 24].

The difference between Cdk5 and other Cdks is also
exhibited in the regulation of its activity by phosphoryla-
tion and association with inhibitors. Whereas the conven-
tional Cdks require Thr160 phosphorylation in their T-
loop by Cdk-activated kinase (CAK) for maximal activa-
tion [25], this site is dispensable for Cdk5 full activation,
though Cdk5 contains the equivalent Ser159 residue [26,
27]. On the contrary, the structural analysis of p25/Cdk5
predicts that upon phosphorylation on Ser159, the activi-
ty of Cdk5 would probably be inhibited [28]. Further-
more, dual-specificity kinases Wee1 and Myt1 phosphor-
ylate Thr14 and Tyr15 of conventional Cdks and subse-
quently inhibit their activities [25]. However, although
Thr14 and Tyr15 are conserved in Cdk5, Wee1 cannot
phosphorylate Cdk5 in vitro [26]. Bovine thymus con-
tains an inhibitory kinase that inactivates Cdk5 activity in
vitro, but its identity still remains a mystery [29]. Unex-
pectedly, a novel adaptor protein, Cables, links Cdk5 to
the non-receptor tyrosine kinase, c-Abl, which phosphory-
lates Tyr15 of Cdk5 and subsequently enhances its activi-
ty [30]. In addition, while Cdk-inhibitory subunits (CKIs)
such as p21 and p27 are efficient inhibitors for other
Cdks, they cannot inhibit Cdk5 effectively, suggesting
that Cdk5 has unique mechanisms for the regulation of its
activity [31].

Whereas other Cdks are the major regulators in the
control of cell cycle progression, there is no evidence that
Cdk5 participates in the regulation of cell cycle, which
represents another significant difference between Cdk5
and other Cdks. In contrast, Cdk5 is involved in many
other cellular processes, particularly in the nervous sys-
tem. During the last decade, the knowledge of Cdk5 has
been accumulated dramatically, partially as a result of the
identification and characterization of its substrates. To
date, more than 20 substrates for Cdk5 have been identi-

fied [32]. Interestingly, most of the proteins are not sub-
strates for other Cdks, indicating that Cdk5 has distinct
characteristics from other Cdks.

Well-Established Role of Cdk5 in Neuronal
Migration

The best-characterized functional role of Cdk5 is to
regulate cytoarchitecture in the central nervous system
(CNS), which is revealed from the studies of Cdk5 knock-
out mice. In the adult mouse brain, six layers reside in the
outer surface of the brain, cerebral cortex, which is estab-
lished by neuronal migration in an inside-out fashion dur-
ing development: the neurons in the outer layer come
from the later born cells and migrate through previously
formed layers to reach their final destination. Whereas
Cdk5 knockout mice show perinatal lethality [5], the ana-
tomical study reveals the disruption of neuronal layering
in many brain regions, including cerebral cortex, hippo-
campus, cerebellum and olfactory bulb, pointing to a role
of Cdk5 in neuronal migration [5, 33, 34]. p35 null mice
display a similar inverted layering of cortical neurons.
However, they exhibit mild disruptions in the hippocam-
pus and cerebellum, possibly due to the compensation of
p39 [6, 35]. Unlike Cdk5 knockout mice, p35 null mice
are viable and fertile. While p39-deficient mice display
normal phenotype, p35/p39 double-mutant mice exhibit
indistinguishable characters as Cdk5 null mice, suggesting
that p35 and p39 are necessary and sufficient for Cdk5
activation [7]. All the evidence above indicates that Cdk5
is important for neuronal positioning.

While Cdk5 displays critical functions in neuronal
migration, various studies also unravel the significant
roles of Cdk5 in axon guidance, cytoskeleton dynamics,
membrane transport and neurodegenerative diseases [32,
36]. In addition, recent studies also provide evidence that
Cdk5 activity can regulate the synaptic functions in the
CNS as well as the neuromuscular junction.

Central Synapse and Neuromuscular Junction

Synapse is a specialized structure where neurotrans-
mission occurs either between neurons or between neuron
and effector cell. The neurotransmitter release represents
one of the pivotal events in synaptic transmission. At the
synapse, neurotransmitters are stored in the synaptic vesi-
cles at the presynaptic sites. When depolarization signals
arrive at the presynaptic terminals, neurotransmitters are
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released to the synaptic cleft, bound to the receptors
present on the postsynaptic membrane, and trigger the
opening of ion channels, which results in either depolari-
zation or hyperpolarization of the postsynaptic cells [37].
During the formation of synapses, the pre- and postsynap-
tic cells undergo complex modifications in order to me-
diate rapid and accurate neurotransmission. The presyn-
aptic differentiation is characterized by accumulations of
synaptic vesicles at the presynaptic terminals as well as
the vesicle recycling through endocytosis [38]. On the oth-
er hand, the postsynaptic differentiation is characterized
by the clustering of neurotransmitter receptors and post-
synaptic proteins, e.g. postsynaptic density protein 95
(PSD-95), in the postsynaptic sites. Neurons in the CNS
communicate at the central synapse, whose formation
and maintenance are largely unknown, owing to its inac-
cessibility and complexity. Most of the knowledge about
synapse formation is derived from the study of one spe-
cialized synapse, the neuromuscular junction (NMJ),
where the motor neuron communicates with the muscle
fiber [39]. The NMJ is an intricate structure composed of
the presynaptic motor nerve terminal ensheathed by the
Schwann cell, the postsynaptic muscle fiber, and the syn-
aptic cleft, which is occupied by the basal lamina. The
presynaptic specialization in the NMJ involves the accu-
mulation of synaptic vesicles containing neurotransmit-
ters, such as acetylcholine (ACh), at the active zones of
nerve terminals, while the postsynaptic specialization of
the muscle fibers is well characterized by the clustering of
a number of postsynaptic proteins, including acetylcho-
line receptor (AChR), and the clustering of nuclei at the
subsynaptic region (the subsynaptic nuclei) that contrib-
utes to selective gene transcription [40]. Two major nerve-
derived molecules, agrin and neuregulin (NRG), have
been identified to induce the postsynaptic specialization
via different molecular mechanisms. Agrin mediates the
clustering of pre-existing AChRs and other postsynaptic
proteins on the muscle fibers by activation of the receptor
tyrosine kinase, MuSK [41–44]. On the other hand, NRG
increases the local transcription of AChR subunits in the
subsynaptic nuclei of the muscle fibers through stimula-
tion of the receptor tyrosine kinase, ErbB [45–48].

Accumulating evidence indicates that Cdk5 is a new
player at synaptic sites, both the central synapse and the
NMJ [49]. Cdk5 and p35 are expressed at the growth
cones of the neurons [9, 50]. Moreover, Cdk5 is localized
in both pre- and postsynaptic terminals of the neurons,
revealed by immunogold labeling [51]. Subcellular frac-
tionation experiments show that Cdk5 and its activators
are present in the synaptosomes [20]. Cdk5 is involved in

neurosecretion at the presynaptic terminal [32]. Further-
more, Cdk5 modulates dopamine signaling and affects
NMDA receptor-mediated induction of long-term poten-
tiation (LTP) in the postsynaptic sites of the central syn-
apses [51]. In addition, Cdk5 activity is potentially in-
volved in the NMJ formation and maintenance [22].

Cdk5 in Neurotransmitter Release and
Endocytosis

One of the most prominent roles of Cdk5 at the presyn-
aptic terminal is the regulation of neurotransmitter re-
lease (fig. 1). The presynaptic terminal is characterized by
the accumulation of numerous synaptic vesicles, which
are filled with neurotransmitters. A number of proteins
are involved in the process of transmitter release from the
synaptic vesicles, including ATPase, N-ethylmaleimide-
sensitive fusion protein (NSF), soluble NSF attachment
proteins (SNAPs), the SNAP receptors (SNAREs) integral
to either synaptic vesicles (v-SNAREs; i.e. vesicle-associ-
ated membrane protein (VAMP)) or target membrane (t-
SNAREs; i.e. syntaxin and synaptosome-associated pro-
tein of 25 kDa (SNAP-25)). For the release of neurotrans-
mitter, v-SNAREs and t-SNAREs are associated to create
a 7S core complex that further recruits SNAPs and NSF to
form a 20S complex, which is required to bring the donor
and target membranes to close proximity and become
fusion-competent when NSF hydrolyses ATP [52–56].
The process of membrane fusion is regulated by Munc-18.
Munc-18 interacts with one of the t-SNAREs, syntaxin
1A, preventing the interaction of syntaxin 1A with
v-SNAREs, which is required for secretory vesicles to
achieve competency for membrane fusion at the presyn-
aptic terminals. Interestingly, association of Cdk5/p35
with Munc-18/syntaxin 1A is likely to occur at the presyn-
aptic terminals in the absence of ATP. In the presence of
ATP, Cdk5 phosphorylates Thr574 of Munc-18 and sub-
sequently disassembles Munc-18/syntaxin 1A complex,
allowing the interaction between dissociated syntaxin 1A
and v-SNAREs, which leads to increased neurotransmit-
ter release [57, 58]. This finding indicates that Cdk5 activ-
ity can enhance neurotransmission through modulation
of Munc-18/syntaxin 1A interaction. On the contrary,
Cdk5 also negatively regulates secretory responses
through modulation of the interaction of SNARE proteins
with the calcium channels. The voltage-dependent cal-
cium channels (VDCCs) are involved in the regulation of
neurotransmitter release at the presynaptic terminals, and
P/Q-type VDCCs are highly concentrated at central syn-
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Fig. 1. Cdk5 in neurotransmitter release and endocytosis at the presynaptic terminals. In the absence of Cdk5,
Munc-18 binds syntaxin 1A, interfering the interaction between syntaxin 1A and v-SNAREs, which is required for
synaptic vesicle to gain competency for membrane fusion. Upon phosphorylation by Cdk5, Munc-18 is dissociated
from syntaxin, allowing the syntaxin 1A/v-SNAREs interaction and leading to enhanced neurotransmitter release. In
contrast, Cdk5 inhibits neurotransmitter release through phosphorylation of P/Q type voltage-dependent calcium
channel (VDCC), resulting in the dissociation of VDCC from SNAREs, which attenuates the efficiency of neurotrans-
mission. Cdk5 also phosphorylates synapsin I and amphiphysin 1, which are potentially involved in neurotransmitter
release and endocytosis, respectively, although the physiological significance remains to be determined.

apses [59, 60]. Cdk5 is able to phosphorylate the intracel-
lular loop connecting domains II and III (LII-III) of P/Q-
type VDCCs, and the phosphorylation subsequently dis-
rupts the interaction between VDCCs and SNARE pro-
teins, such as SNAP-25 and synaptotagmin, which is
required for efficient neurotransmission [59, 61]. More-
over, Cdk5 inhibitor roscovitine enhances neurotransmit-
ter release by increasing the EPSP slope and Ca2+ influx of
P/Q-type VDCCs, suggesting that Cdk5 also suppresses
calcium channel activity [61]. Finally, one of the major
phosphoproteins of synaptic vesicles at the nerve termi-
nals, synapsin I, is thought to be involved in the regulation
of neurotransmitter release [62]. It has been reported that
Cdk5 phosphorylates Ser551 and Ser553 of synapsin I,
although the physiological significance of the phosphory-
lation is still unknown [63]. Taken together, these studies
show that Cdk5 can regulate neurotransmitter release

both positively and negatively through different molecu-
lar mechanisms.

The efficient neurotransmission is regulated by two
presynaptic cycles, the neurotransmitter cycle and the
synaptic vesicle cycle [64]. The neurotransmitter cycle
involves transmitter biosynthesis, storage, reuptake and
degradation, while the synaptic vesicle cycle involves tar-
geting to the nerve terminal, docking, fusion, endocytosis
and recycling [64]. These two cycles coordinate and form
the basis of neurotransmitter release at the presynaptic
terminals. During high rates of neurotransmitter release,
the nerve terminals maintain a relatively constant surface
area by endocytosis. Actually, exocytosis is followed rap-
idly by endocytosis, which is necessary for recycling syn-
aptic vesicles at the nerve terminals [64]. Clathrin and the
clathrin adaptors such as AP180 and AP-2 are the main
components in the process of endocytosis. The recycling
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of synaptic vesicles at the presynaptic terminal depends
on the formation of clathrin coat on nascent endocytotic
vesicles. Other accessory proteins are also implicated in
the process of synaptic vesicle endocytosis, including
dynamin, synaptojanin, endophilin and amphiphysin
[65]. Based on a yeast two-hybrid screen, a number of pro-
teins that are involved in the process of endocytosis have
been identified to interact with p35 [66, 67, unpubl.
observation]. Amphiphysin 1, an abundant phosphopro-
tein in the nerve terminals of mature neurons, belongs to a
protein family conserved from yeast to human, whose
members play critical roles in endocytosis possibly by
interacting with dynamin, AP2 and clathrin [68–72]. Am-
phiphysin 1 knockout mice exhibit defects in synaptic
vesicle recycling, indicating an important endocytotic
function of amphiphysin 1 [73]. Mammalian amphiphy-
sin 1 interacts with p35 and can be phosphorylated by
Cdk5 at the sites including Ser272, Ser276 and Ser285
[66, 67]. Interestingly, the yeast homologue of amphiphy-
sin 1 (Rvs167) binds the p35 counterpart Pcl2 in yeast,
and is a substrate of Pho85, the Cdk5 homologue, indicat-
ing a conserved function of the protein networks from
yeast to human [74]. Strikingly, Pcl2, Pho85, and Rvs167
mutations exhibit similar defects in endocytosis and actin
function in yeast [74]. Although the physiological func-
tion of amphiphysin 1 phosphorylation by Cdk5 remains
to be elucidated, the similarity between p35/Cdk5/amphi-
physin 1 and Pcl2/Pho85/Rvs167 protein networks sug-
gests a potential role of Cdk5 in endocytosis at synapses
(fig. 1).

Cdk5 in Receptor Signaling

To accomplish the efficient reception of neurotrans-
mitter signals, the postsynaptic terminal is specialized by
the clustering of a number of proteins, including specific
neurotransmitter receptors, ion channels, signaling mole-
cules, adaptor and scaffold proteins, protein kinases, pro-
tein phosphatases, cytoskeletal and adhesion proteins.
Different receptors (e.g. glutamate receptors and dopa-
mine receptors) clustered at synapses are responsible for
ligand activation and signal transduction, which form the
basis of the normal synaptic functions. For example, at
glutamatergic synapses in the CNS, glutamate receptors
are clustered on the postsynaptic membrane, including N-
methyl-D-aspartate receptor (NMDAR), ·-amino-3-hy-
droxy-5-methyl-4-isoxazolepropionic acid receptor (AM-
PAR), and metabotropic glutamate receptor (mGluR)
[75]. Increasing evidence demonstrates that Cdk5 can

modulate various receptor signaling at the synapse
(fig. 2).

NMDA Receptor Signaling
Glutamate is the major neurotransmitter that mediates

most of the excitatory neurotransmission. Glutamate re-
ceptors are classified as ionotropic receptors or metabo-
tropic receptors (mGluRs). Ionotropic glutamate receptors
are further divided into NMDA receptors, AMPA recep-
tors, kainate receptors and ‰ receptors. In the CNS,
NMDAR is important for learning, memory and CNS
development [76, 77]. NMDAR is an NR1/NR2 hetero-
meric complex composed of the receptor subunit NR1 and
the regulatory subunits NR2A–NR2D [78]. The activation
of NMDAR correlates with the induction of long-term
synaptic plasticity including LTP [79]. Adult NR2A-defi-
cient mice show defective LTP and impaired spatial mem-
ory, suggesting a critical role of NR2A in LTP induction
[80]. Recent evidence indicates a direct linkage between
Cdk5 and NMDAR: Cdk5 associates with NR2A and
phosphorylates Ser1232 of NR2A both in vitro and in
intact cells, and the phosphorylation is attenuated in Cdk5
null mice. Notably, the Cdk5 inhibitor roscovitine blocks
LTP induction as well as NMDA-evoked currents in rat
CA1 hippocampal neurons, suggesting an involvement of
Cdk5 in the regulation of NMDAR in LTP induction,
which might contribute to memory and learning [51].

Interestingly, a recent report also correlates Cdk5 func-
tion with NMDAR through identification of two interact-
ing proteins of Cdk5 activator, ·-actinin-1 and ·-subunit
of Ca2+/calmodulin-dependent protein kinase II (CaM-
KII·) [81]. CaMKII·, ·-actinin-1 and Cdk5 activator, p35
or p39, are present in a complex and the association of
these proteins is stimulated by Ca2+. In addition, the
NMDAR antagonist MK801 reduces the association be-
tween p35 and CaMKII· to basal levels, suggesting that
the glutamate-mediated increase of the interaction be-
tween Cdk5 activator and CaMKII· is mainly regulated
by NMDAR signaling [81]. These observations indicate a
possible cross talk between Cdk5 and CaMKII pathways
mediated by NMDARs, which might represent a critical
mechanism underlying synaptic plasticity, learning and
memory.

mGluR Signaling
Another type of glutamate receptors, the mGluR, is a

member of the superfamily of seven transmembrane seg-
ment G protein-coupled receptors that exert their effects
via direct modulation of ion channels or formation of sec-
ond messengers [82, 83]. (S)-3,5-dihydroxyphenylglycine
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Fig. 2. Involvement of Cdk5 in the signal transduction at synapses.
Cdk5 phosphorylates DARPP-32, a modulating protein in the D1
dopamine receptor-PKA pathway. The phosphorylation of DARPP-
32 by Cdk5 converts it into an inhibitor of PKA, whereas the phos-
phorylation of DARPP-32 by PKA renders it an inhibitor of PP-1.
Moreover, Cdk5 phosphorylates PP inhibitor-1 and makes it a poor
substrate of PKA, which in turn attenuates the inhibitory ability of
PP inhibitor-1 to PP-1. Furthermore, activated mGluR induces CK1
and subsequently Cdk5 activities, which contribute to DARPP-32
phosphorylation. In addition, Cdk5 phosphorylates NR2A subunit
of NMDA receptor (NMDAR), leading to LTP induction. Converse-
ly, NMDAR-induced Ca2+ influx stimulates the association of p35/
CaMKII/·-actinin1 complex. Cdk5 also inhibits cell-cell adhesion

through phosphorylation of ß-catenin, dissociating ß-catenin from N-
cadherin, an adhesive molecule that is also involved in LTP induc-
tion. At the postsynaptic region of the NMJ, NRG-ErbB signaling
induces Cdk5 activity, which in turn phosphorylates ErbB receptors,
leading to increased transcription of AChR. Cdk5 also induces phos-
phorylation of STAT3 and gene transcription in subsynaptic nucleus.
Furthermore, Cdk5 phosphorylates Pctaire1 and upregulates its
activity in muscle, although the physiological significance is not
clear. In addition, Cdk5 interacts with Rac and Pak1 and phosphory-
lates Pak1 in a Rac-dependent manner, raising an intriguing possibil-
ity that Cdk5 might regulate AChR clustering at the postsynaptic site
of the NMJ.

(DHPG), an agonist for group I mGluRs, induces both
casein kinase 1 (CK1) and Cdk5 activities in neostriatal
neurons [84]. Both CK1 and Cdk5 phosphorylate a signal-
ing molecule in dopamine signaling cascade, dopamine
and cyclic AMP-regulated phosphoprotein with molecu-

lar mass 32 kDa (DARPP-32) [84, 85]. CK1 phosphory-
lates Thr137 of DARPP-32, while Cdk5 phosphorylates
Thr75 of DARPP-32. Moreover, Cdk5 inhibitor butyro-
lactone selectively blocks Thr75 phosphorylation of
DARPP-32, whereas CK1 inhibitors CK1–7 and IC261

D
ow

nl
oa

de
d 

by
: 

H
on

g 
K

on
g 

U
ni

ve
rs

ity
 o

f S
ci

en
ce

 &
 T

ec
hn

ol
og

y 
   

   
   

 
20

2.
40

.1
39

.1
64

 -
 6

/2
3/

20
14

 1
0:

11
:4

9 
A

M



186 Neurosignals 2003;12:180–190 Cheng/Ip

abolish DHPG-evoked Cdk5 activity as well as the phos-
phorylation of both Thr137 and Thr75 of DARPP-32,
suggesting that Cdk5 resides downstream of CK1 in the
mGluR-CK1-Cdk5-DARPP-32 cascade [84]. Interesting-
ly, application of DHPG induces Ca2+ currents in neo-
striatal neurons and the enhancement is greatly dimin-
ished in the presence of CK1–7 or butyrolactone, as well
as in DARPP-32–/– neurons, indicating that mGluR-
mediated upregulation of Ca2+ currents potentially in-
volves CK1, Cdk5 and DARPP-32 [84].

Dopamine Signaling
DARPP-32, an important signaling molecule identi-

fied by Greengard’s group, displays critical roles in dopa-
mine signaling pathway, which is implicated in several
neurological diseases such as Parkinson’s disease and
schizophrenia [86]. At dopaminergic synapses, the neuro-
transmitter dopamine activates D1 dopamine receptor
and triggers a signaling cascade involving cyclic AMP-
dependent protein kinase (PKA), DARPP-32, and type 1
protein phosphatase (PP-1). The activation of D1 dopa-
mine receptor induces PKA phosphorylation on Thr34 of
DARPP-32, which converts DARPP-32 into a PP-1 in-
hibitor, attenuating dephosphorylation of PKA substrates
and increasing the efficacy of dopamine signaling [87, 88].
However, when DARPP-32 is phosphorylated at Thr75
by Cdk5, DARPP-32 is converted into an inhibitor of
PKA, and subsequently reduces phosphorylation of
downstream PKA substrates, including GluR1 subunit of
the AMPA receptor [85]. Therefore, the Thr75 phosphor-
ylation of DARPP-32 by Cdk5 inhibits PKA signaling
cascade. Furthermore, PKA and Cdk5 can regulate PKA
cascade in antagonistic manners through phosphorylation
of protein phosphatase inhibitor-1 (PP inhibitor-1) at dif-
ferent residues. Thr35 phosphorylation of PP inhibitor-1
by PKA makes it a potent inhibitor of PP-1, whereas
Ser67 phosphorylation of this inhibitor by Cdk5 renders it
a poor substrate for PKA, although the Ser67 phosphory-
lation itself does not affect the inhibitory ability of PP
inhibitor-1 [89]. These observations suggest that Cdk5
and PKA can regulate dopamine signaling with opposing
effects through phosphorylation of DARPP-32 and PP
inhibitor-1. In addition to the regulation of the signaling
molecules, a recent study also demonstrates an involve-
ment of Cdk5 induction in cocaine addiction mediated by
the transcription factor, ¢FosB, thereby further support-
ing a role of Cdk5 in the modulation of dopamine signal-
ing [90]. The findings that Cdk5 is involved in both
mGluR and dopamine signalings also raise the possibility
of a cross talk between these two pathways.

Cadherin-Mediated Signaling
Cadherins are a family of Ca2+-dependent adhesion

molecules that are stabilized at the plasma membrane,
including neural- (N-) and epithelial- (E-) cadherins. ß-
Catenin is a cytoplasmic protein that links cadherins to
cytoskeleton [91]. The isolation of ß-catenin as a p35-
interacting protein provides the first demonstration of a
role of Cdk5 in cell-cell adhesion, a possible mechanism
leading to neuronal migration. ß-Catenin is a substrate of
Cdk5 and the phosphorylation by Cdk5 dissociates ß-
catenin from N-cadherin, leading to attenuated cell-cell
adhesion [92, 93]. Strikingly, cadherins have been re-
ported to be critical in the induction, but not the mainte-
nance, of LTP in hippocampal slices, which can be signifi-
cantly blocked by either antibodies or antagonistic pep-
tides of cadherin [94, 95]. A recent study suggests that
Cdk5 may regulate ß-catenin/cadherin affinity as well as
ß-catenin localization at synaptic sites through modula-
tion of Tyr654 phosphorylation on ß-catenin, which can
be diminished by Cdk5 inhibitor roscovitine, although
the detailed mechanism remains to be determined [96].
Therefore, the participation of Cdk5 in cadherin signaling
suggests yet another potential mechanism of Cdk5 in LTP
induction.

ErbB Signaling at the NMJ
In addition to the diverse functional roles of Cdk5 at

the central synapse, a report also indicates remarkable
functions of Cdk5 in the formation and maintenance of
the NMJ. Recently, Cdk5 has been reported to play an
important role at the postsynaptic region of the NMJ,
involving in the NRG-ErbB signaling pathway [22]. Cdk5
and p35 are highly expressed in embryonic muscle and
localized at the NMJ during early postnatal stages of mus-
cle development. NRG, a factor that induces the synapse-
specific transcription of AChR subunits at the postsynap-
tic sites through the ErbB-Ras-Raf-MEK-ERK, ErbB-
Ras-MKK4-JNK or ErbB-PI3K pathway [97–99], stimu-
lates p35 and Cdk5 expression as well as Cdk5 activity in
C2C12 myotubes. In addition, Cdk5 phosphorylates
ErbB2/3, suggesting a positive feedback mechanism.
Moreover, the inhibition of Cdk5 activity by roscovitine,
dominant-negative Cdk5 construct, or antisense oligonu-
cleotides diminishes the NRG-evoked ErbB activity and
the downstream MEK-ERK phosphorylation, accompa-
nied by decreased transcription of luciferase reporter gene
driven by the AChRÂ promoter. In contrast, overexpres-
sion of p35 in both C2C12 cells and tibialis anterior mus-
cle induces AChRÂ promoter activity without NRG treat-
ment [22]. Taken together, these observations demon-
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strate a novel role of Cdk5 in the NRG-ErbB signaling at
the NMJ. In addition to the modulation of the ErbB
receptor, Cdk5 also regulates a downstream signaling
molecule in NRG pathway, the transcription factor
STAT3 [24]. Interestingly, Cdk5 activity induces phos-
phorylation of STAT3 and its transcriptional activity in
C2C12 myotubes, further supporting a role of Cdk5 in
regulating gene expression at the NMJ [24]. Similar regu-
lation on ErbB and STAT3 by Cdk5 is also observed in
the CNS [unpubl. observation]. Moreover, NRG and
ErbB are also essential for neuronal development in the
CNS. Although their precise functions in the adult CNS
are unknown, a report demonstrates that ErbB4 asso-
ciates with PSD-95, and that the expression of PSD-95
can enhance the NRG-mediated activation of ErbB4 and
MAP kinase. In addition, NRG suppresses LTP induc-
tion in the hippocampal CA1 region without affecting
basal synaptic transmission, suggesting that NRG-ErbB
signaling in the central synapse may modulate synaptic
plasticity [100]. It remains to be determined whether
Cdk5 is also involved in the NRG-ErbB signaling at cen-
tral synapses.

Other Synapse-Related Functions of Cdk5

While the functions of Cdk5 at the NMJ are still to be
further explored, a p35-interacting protein in muscle,
Pctaire1, has been isolated from a yeast two-hybrid screen
(fig. 2). Pctaire1, a Cdk-related kinase, interacts with p35
and can be phosphorylated by Cdk5 on Ser95. Although
the significance of this phosphorylation in muscle re-
mains to be determined, it enhances Pctaire1 activity in
vitro [101]. Recently, a report indicates that Pctaire1 can
regulate neurite outgrowth in Neuro2A cells, suggesting a
possible link between Pctaire1 and cytoskeleton [102].
These findings raise a possibility that Cdk5 may regulate
the clustering of the postsynaptic proteins via p35-
Pctaire1 interaction and Pctaire1 phosphorylation, which
might be involved in the regulation of cytoskeleton. Nota-
bly, Cdk5/p35 colocalizes and associates with small
GTPase Rac and its effector Pak1, the important players
in actin polymerization. Furthermore, Cdk5 causes Pak1
hyperphosphorylation in a Rac-dependent manner, which
results in decreased Pak1 activity [9]. Because the Rho
family of GTPases and Pak kinases are implicated in
actin polymerization [103, 104], the modification of Pak1
by Cdk5 is likely to affect the actin network, which might
result in the clustering of the postsynaptic proteins. Addi-
tionally, Rac has been reported to mediate agrin-induced

AChR clustering in muscle [105, 106]. Moreover, Pak1
interacts with Dvl, a MuSK interacting protein, and can
be activated by agrin in a Dvl-dependent manner, leading
to AChR clustering [107]. Inhibition of Cdk5 regulates
the agrin-mediated Pak1 phosphorylation [108]. Taken
together, these observations raise a possibility that Cdk5/
p35 might play a role in the regulation of AChR clustering
in muscle through interaction with Rac and phosphoryla-
tion of Pak1 (fig. 2).

Moreover, several lines of evidence also link Cdk5 to
synaptic activity. For example, nerve injury induces Cdk5
and p35 expression as well as Cdk5 activity in skeletal
muscle, whereas the treatment of sciatic nerve with tetro-
dotoxin (TTX), a blocker of voltage-gated Na+ channels,
results in increased p35 expression in muscle, indicating
that nerve activity regulates Cdk5 activity at the post-
synaptic regions [109]. Depolarization experiments in
hippocampal neurons also reveal that neural activity
inhibits Cdk5 activity, suggesting that Cdk5 activity is
highly regulated at synapses [96].

Conclusion

Cdk5 has been identified as a neuronal Cdc2-like
kinase a decade ago. Unlike other members of the Cdk
family, Cdk5 is neither cyclin-dependent, nor responsible
for the control of cell cycle progression. Although the best-
known function of Cdk5 is in neuronal migration and the
development of the CNS, increasing evidence unravels
additional roles of this kinase in neuronal and non-neu-
ronal systems. The involvement of Cdk5 in the central
synapse and the NMJ, largely based on the identification
of a number of interacting proteins as well as substrates
for Cdk5/p35, reveals novel functions of this enzyme,
including neurotransmitter release and various receptor
signalings, which might contribute to, at least in part, the
basic functions of the brain and muscle. Further study of
Cdk5 will undoubtedly provide more exciting insights
into the mechanisms of these processes.
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